В помощ на участниците в състезания и олимпиади по математика от 2-ри до 7-ми клас - за можещите и за по-малко талантливите, но упоритите .
dauchimmatematika.alle.bg

Задачи от работа за ученици от 6 и 7 клас.


                                    В задачите от  работа   основни понятия са :

  • ·         Работа
  • ·         Производителност (норма за  единица  време )
  • ·         Времето  за което,ще извършим определената  работа  

Ако работата означим с  A, времето с t,  а нормата с  P , то  е в сила формулата 

                                                             A= P.t

              (Работата  е равна  на производителността по  времето)

Предложените  задачи са подходящи за национално външно оценяване  и за математически състезания и турнири  



                              ПЪРВА  ЧАСТ

Започваме със задачи от работа  за които, по план 

 трябва ,да се извърши дадено  количество  работа .

 

            


 

Задача   Една сладкарница по план  произвежда  за  2 часа  20  детски торти.С колко процента трябва да се увеличи  производителността на сладкарницата  ,за да прави по  13   торти  за  1  час                                                                     Решение

  Нанасяме данните в таблица. Приемаме ,че извършената работа е 100 % . Търсим  x .                                                                                                                                                                                              

 

производителност(норма)

                     (N)

работно време

            (t)

       работа                           (A)

По план

10  броя

За 2 час

20 броя

Действително

извършено

13  броя

За 1 час

13 броя

  •    10 броя са  100 % , 
  •    13 броя  са  x %  
  • Тогава   x  =(13.100) /10    или    x=130% .   
  • Тогава  сладкарницата трябва  да  повиши  производителността си  30 процента .    


 


Задача В знак на благодарност    седемте джуджета решили да подарят на Снежанка 90 килограма   сребърна руда .Те трябвало да   изкопават по  10 килограма сребърна руда на ден  .Две  от джуджетата се разболяли,  и  ,те  намалили нормата си с 10 % . Колко  повече  дни  са копали джуджетата ?

Решение

 

 

 

производителност                             (N)

работно  време                 (t)

        работа                           (A)

По план

10 kg

  9  дни

90  kg

Действително

извършено

9 kg

  x дни

90 kg                

 

По план  90  килограма руда по  10  килограма  на  ден  се изкопават  от джуджетата  за   90:10=9 дни

Тогава  новата норма е  10%  от 10 ,което  е 1 kg.Тогава новата норма е 10-1=9   kg

Тогава джуджетата са копали   10   дни , а в повече са копали  един   ден

 

 

                                                                 


 


Задача  Учениците от 6a  клас имат своя   оранжерия .Те забелязали ,че ако копаят  5 дни  по  16 реда домати или ако копаят един ден по-малко, то те ще прекопаят един и същ брой редове домати .По колко редове домати повече на ден  са копали  учениците  през  тези  4 дни ?                                                                              

 Решение

 

производителност(N)

    (дневна норма)

работно време(t)

извършена работа (A)

По план

16

5 дни

80 реда

Действително

извършено

x

4 дни  

4x  реда

                        От  уравнението  4x=80  ,намираме ,че   x=20 реда .                                         

Следователно ,те  са увеличили  производителността си   с  20-16=4 реда на ден 



 


Задача  Трактор трябва да изоре един блок за определено време ,като всеки ден изорава по 20  декара .Той  преизпълнил тази норма  с 25  %    и за последният   ден  му останали за изораване   само  18 декара  .Колко декара е целият блок ?

                                                Решение

1.Нормата е 20 декара на ден

2.Увеличението е  с 25  %    на ден ,което е точно 1,25 . 20 =25 декара

3.Новата норма е  25  декара на ден

4.Нека блока е x декара

 -по план ще е изоран за   време x/20  дни

-с увеличението на нормата  без един  ден ще го  изоре   за  (x-18)/25  дни 

5.Изравняваме   времената  и съставяме уравнението  

x / 20    -  (x-18)/25  =  1 ,откъдето намираме,че x=28 декара

 

производителност(N)

    (дневна норма)

работно време(t)

извършена работа (A)

ПоПо план

20 декара 

x /20  дни 

x декара 

Действително

Действително извършено

25 декара 

(x-18) /25  дни 

x-18  декара 






 

Задача  Бригада по план трябва да изкопае канал с дължина 1920 метра .След  като  копала   12 дни   с една и съща норма на ден , тя увеличила производителността си  с 20%  и след 6 дни  изкопала канала.По  колко метра на ден е копала бригадата през първите 12 дни ?                                                                                                                

A) 100m       B) 300m        C) 400m           Dдруг отговор                                                                                       Отговор A)                      

 Решение  

Означаваме търсената  производителност  с  x   – това са метрите които, изкопава бригадата през първите 12 дни .

За тези 12  дни тя   изкопава канал с дължина  12.x метра

 6 дни  тя работи с производителност  1,2 .x .(20% увеличение на нормата )

 За тези 6  дни тя   изкопава канал с дължина  1,2.6.x =7,2 метра

 От уравнението  12.x  + 7,2.x =1920  намираме  търсената  норма -   x=100  метра

 



Задача   Кожарска фирма  произвежда по план  дневно по 18  броя кожени якета  . Фирмата увеличава производството си с 3 якета на ден .Така тя изработила 60  якета над плана  и  изработила  поръчката си един ден преди срока .Какъв брой  якета е произвела фирмата след увеличението на производителността си ?                                                                                                     Решение                                                                      Изборът на неизвестна величина  зависи от дадените условия в задачата и търсените  величини .Ние знаем разликата в сроковете на изпълнение .

1.     Означаваме с  x - броят якета, които трябва да се ушият по план  ,така е  извършената работа  

2.     Попълваме данните в таблицата на първи ред   

3.     Намираме , че времето необходимо за изработката на тези якета е x/18 , и попълваме това в таблицата.                      

 

производителност(N)

    (дневна норма)

работно време(t)

извършена работа (A)

По план

18

x/18

x якета

Действително

извършено

21

(x+60)/ 21

x+60  якета

                                

4.     Започваме да попълваме вторият ред на таблицата    - производителността  е  18+3=21  , а извършената  работа е    x+60  якета

5.     От това,че разликата във времената е единица , то съставяме уравнението :

6.         x / 18   -   (x+60)/ 21=1   ,където    x е естествено число 

7.     Коренът на това уравнение е   x= 486 якета  

8.     Следователно произведените якета са 486+60=546 броя                         

Проверка :От това,че 60:3=20 дни  , то времето трябва да е по-голямо от 20 .Действително 546:21 =26 , където 26>20
                                          
                                




Задача  Трактор  трябвало да изоре нива   за определено време. Поради неблагоприятни условия вместо предвидените 120 m2 на час, тракторът изоравал   с 30 m2  по-малко и свършил работата за 2 часа повече от определеното време. Площта  на нивата , която е трябвало да изкопае тракторът , е :                                                                                              

А) 300 m2  B)540 m2   C)720 m2   D)800 m2                                                          

Отговор C):

 

производителност(N)

    (дневна норма)

работно време(t)

извършена работа (A)

По план

120 m2

x /120 часа

x  m2   

Действително

извършено

120 -30=90 m2  

x /90   часа

x m2   

Упътване :Разгледайте таблицата и съставете уравнение за нивата .



 

Задача  Шивашка бригада трябвало да ушие определен брой еднакви ризи. След като бригадата  работила 12 дни, ушивайки един и същи брой ризи дневно, установили, че са изработили с 60 ризи повече от половината на поръчката. Бригадата увеличила дневната си производителност с 20% и така изпълнила цялата поръчка общо за 18 дни. За колко ризи е била поръчката?

(Национално състезание –тест по математика за 7 клас )

Упътване : Ако  x  е  дневната норма на бригадата  съставете уравнението  :                                           

12x + 7,2x = 24x −120 



 Задача .Няколко  работника  копаят канал  като , всеки от тях   изкопава  по 30  метра  на ден . Ако работят с тази производителност  три дни  и после я  увеличат   с   20%   ,те ще изкопаят канала три  дни по-рано . За колко дни  е изкопан  и  с каква дължина е каналът ?

                                                  Решение   

  • Нека по план  за   x дни  работниците   изкопават канала с норма по 30 метра на ден .  Тогава дължината на канала е  30 .x метра  .
  • Да намерим дължината на канала  по друг начин ,като използваме условието на задачата .    3.30  метра е дължината от канала изкопана за 3 дни .                           Следващите  дни те ще работят  с норма от   30+20% .30 =36  метра на ден  и работата ще е извършена 3 дни предсрочно,така е за x- 3 -3 =x -6 дни .

                      Тогава  30 .x=30.3 + (x -6).36  и    x= 21 дни 

Следователно дължината на канала  е  21.30 =630 метра 



 

Задача За да решат определен брой задачи с еднаква трудност за определено време ,група ученици трябва да решават  по 20 задачи на ден .След като решавали  4  поредни дни  ,те решили да увеличат  броя на задачите, които трябва да решат с  10 %  и  решили дадените задачи  два дни по –рано .Колко са задачите  и за колко дни са ги решили ?                

 Отговор :задачите са  520  ,а  дните  4+20=24



 

Задача  Седемте джуджета решили да подарят на Снежанка определено количество сребърна руда .Те трябвало да   изкопават по  8 килограма сребърна руда на ден  .Едно от джуджетата се разболяло и те започнали да  изкопават по 6  килограма  на ден.За да изкопаят толкова ,колкото са обещали  ,  те работили  допълнително още един ден и  въпреки това им останали  още 4 килограма  руда за изкопаване.Колко килограма  сребърна руда  са обещали да  подарят  седемте джуджета  на Снежанка ?

Решение

Нека по план копаят  x дни   по   8  килограма   руда на ден- тогава рудата обещана на Снежанка е     8.x  килограма 

Ако копаят по 6 килограма на ден  при план  8.x , те ще копаят  x+1 ден  

Тогава е вярно ,че  8x= (x+1).6 + 4  и   x =5 дни

Следователно  рудата   е    5.8 = 40 килограма

                                                                                                                                                                       


 


Задача Ако  изработват по  100 стола дневно  мебелна фабрика  ще изпълни дадена поръчка в срок .След  5 дни работа ,фабриката  започнала да произвеждала по 110 стола дневно  и свършила  поръчката  за определеният срок    ,като е произвела 320 стола  в повече .Колко стола  е поръчката на мебелната фабрика ?

                                                              Отговор :3700 стола


 

 Задача  В  земеделска кооперация  трябвало да   ожънат пшеница  от 4800 декара за  определен срок .Поради неблагоприятна метеорологична прогноза  се налагало   да ожънат пшеницата   преди определеният срок .Затова те увеличили   нормата си  25%   и  , четири дни преди  определеният срок   ожънали  7/8  от цялата площ .За колко време е било запланувано да се ожъне  цялата площ ?                                                         

                                                               Отговор -13 дни  и   8 часа                                                                                                  

 Упътване – съставете уравнението  (x-4).6000/x =4200 където    x  е заплануваното време   

 

 

Задача С два трактора  фермер трябва да изоре 4000  декара .След като  увеличил производителността на първият трактор с  35 % ,а на вторият   10 %  , той  изорал  4800 декара.По колко декара може да изоре   всеки от тракторите преди  увеличението на производителността им .

Решение

  • ·Нека  единият от тракторите е изорал x  декара

                        Тогава другият ще изоре  (4000 – x) декара

  •  Новата производителност на  единият е 1,35 x , а на другият 1,1(4000 – x

·         От това,че изорали 4800  декара  е вярно,че

                                          1,35 x  +  1,1(4000 – x)  =4800

От уравнението намираме,че  x= 1600 декара  .Следователно двата трактора преди увеличението са изоравали по 1600 и   2400 декара  


ВТОРА  ЧАСТ

    ЗАДАЧИ В КОИТО,  КОЛИЧЕСТВОТО РАБОТА, КОЯТО  ТРЯБВА ДА СЕ                                               ИЗВЪРШИ   ПРИЕМАМЕ  ЗА  ЕДИНИЦА  


                                                                                               

        

                                                                                                                                                                             




 

Задача   Сляпата къртица копае тунели, за да  се движи и търси корени за храна  .Ако дължината на целият тунел, който изкопава за един ден е  12 метра , то каква част  от него ще изкопае къртицата за  5 часа ,ако копае с една и съща скорост  .

                                                     Решение 

-         Цялата работа на къртицата  за един ден е 12 метра 

-         За един час  тя  ще  прокопае точно 12:12=1 метър , което е  1/12  част от работата 

-         За 5 часа  тя ще прокопае 5 метра ,а това  е  точно  5/12 от тунела 

 

 

 

Задача   Магда и Росен копаят  опитно поле . Магда сама  го изкопава  за 5 часа , а Росен   за 2  часа .Каква част от опитното поле ще изкопаят двамата за един   1 час,ако работят заедно ?

                                                 Решение 

В тази задача,  не знаем площта  на опитното поле .Затова ще приемем ,че  то е   една  единица (ако се търсят проценти, приемаме,че площта е 100 %)

От това ,че Магда  изкопава полето за 5 часа , то за един час тя ще изкопае точно 1/5 от него ,така както е показано на чертежа .

 

 

 

 

 

 

 

 

 

 


От това ,че Росен   изкопава същото поле за 2  часа , то за един час той  ще изкопае точно ½  от него ,така както е показано на чертежа .


 

 

 

 

 

 

 

 

 

 


В задачата се пита ,ако и двамата работят на полето каква част от полето ще изкопаят за 1 час.

Събираме  частите ,които всеки поотделно ще изкопае и ще получим каква част ще изкопаят двамата за  1 час – 1/5 +1/2  =7/10

Това , означава , че  ако разделим полето на 10 равни части, така както е показано на чертежа ,то  те заедно ,ще изкопаят точно 7 части .(за  следващият ден ще останат  3/10 от работата) 


 

 

 

 

 

 

 

 

 

  


 


Задача .Баба Звезда боядисва тераса  за  3 часа , а дядо Петър за  два пъти по –малко време.За колко часа ще боядисат терасата баба Звезда и  дядо Стоян,ако работят заедно ?

Решение:

  1. Приемаме цялата работа – боядисването на терасата за единица
  2. Тогава   баба Звезда  за 1 час  ще боядиса  1/3  част от терасата 
  3. Дядо Петър я боядисва,за два  пъти по-малко време,така е за 3/2 часа    и за 1 час ще боядиса  1:3/2=2/3  от терасата 
  4. Двамата заедно за 1 час ще боядисат  1/3+ 2/3 = 1
  5. Тогава правим извода,че двамата заедно ще я боядисат точно за 1 час

 


 

Задача Учениците от 5 a клас решават  10 задачи с еднаква трудност  за 20 минути ,   от 5 b клас   9 задачи  за 27 минути, а от 5 c  клас ,7  задачи  за 42  минути.  За колко време    трите класа  ще решат   24  задачи  ?

    a )12 минути                   b )    24 минути              c  )  36 минути             d)друг отговор 

Отговор b)

 


Задача .Баба Звезда боядисва тераса  за  3 часа , а дядо Петър за   повече  време.За  2  часа те  ще боядисат терасата ,ако  работят заедно .За колко часа дядо Петър, ако работи сам ,ще боядиса терасата?

1.    Приемаме цялата работа – боядисването на терасата за единица

2.    Тогава   баба Звезда  за 1 час  ще боядиса  1/3  част от терасата 

3.    Нека дядо Петър  боядисва терасата за x  часа .Тогава  за 1 час  той ще има производителност  1/x

4.    Двамата заедно за 1 час  ще боядисат  1/3 + 1/x

5.    От това ,че за два часа двамата заедно  боядисват  терасата с производителност  1/3 + 1/x ,  то  ще е вярно  уравнението :  2(1/3 + 1/x)=1 .Следователно x =6 часа .




 

Задача  Басейн се пълни от две тръби .Ако първата работи  2 часа ,то тя ще напълни третината от басейна  Втората може сама   да го напълни за  3 часа .За колко часа ,ако двете тръби се пуснат заедно ще напълнят басейна .

Решение

  • Първата за 2 часа   пълни 1/3 от басейна 

Тогава  тя ще напълни 3/3 от басейна за три пъти повече време , така е за  6 часа 

Тогава нейната производителност е  1/6 

  • Производителността на втората е 1/3 
  • Двете заедно за 1 час  ще имат производителност  1/6+ 1/3 = 1/2
  • Тогава  ако за x часа двете тръби  пълнят басейна , то ще е вярно,че  0,5 .x=1  и x= 2 часа


 


Задача Джакузи  се пълни  от  шланг за 5 минути ,а се източва от друг  за  6 минути  .За колко време ,ако двата  шланга се пуснат заедно ще се  напълни  джакузито.

Решение

  • Първият  шланг  пълни за 1 минута   1/5  от  джакузито   
  • Вторият   шланг  източва  за 1 минута   1/6   от  джакузито   
  • За една минута , количеството вода което, се събира в джакузито е  1/5  -  1/6  = 1/30
  • Тогава , ако за x минути  се напълни  джакузито  , то ще е вярно,че  1/30  .x=1  и x= 30  минути 


 

 

Задача Две строителни  бригади построяват  2/3 от даден обект за  20 месеца  .Известно е ,че едната бригада може да построи  обекта сама за 40 месеца .За колко време  другата бригада сама ,ще  построи обекта?  

Отговор: ) 120 месеца

 


 

Задача   Басейн  се пълни от  три тръби .Първата може да го напълни сама за   3 часа ,втората за  2 часа и 30  минути  пълни половината   от басейна , а  третата сама  пълни целият басейн  три пъти по –бързо от втората тръба . За колко часа  трите   тръби   ако работят едновременно  ще   напълнят  басейна ?

Отговор : ) 1 час и  24 минути

 


 

Задача   Басейн  се пълни от  две  тръби ,а  източва през трета тръба . .Първата може да го напълни сама за   3  часа ,втората   пет  пъти по-бързо  от първата ,а третата  тръба за 2 часа и 30 минути  източва  половината  басейн  .  Колко време е необходимо за напълването на басейна ,ако и   трите   тръби  са отворени едновременно ?

Отговор :) 5 часа 






В много от задачите от работа  някой обект се включва  след като друг е започнал вече работа  




 

Задача . Една тръба може да напълни басейн за 6 часа,а друга 4 пъти по -бързо. Два часа след първата тръба е пусната втората тръба . До напълването на басейна двете тръби са работили :

                                                       Решение

Понеже не знаем вместимостта на басейна приемаме ,че тя  е единица .

·         Първата тръба за един  час ще напълни 1/6 от басейна 

·         Втората тръба за един  час  пълни 4 пъти по-бързо ,така е  4.(1/6)=4/6  от басейна 

·         Първата за 2 часа  ще напълни  2.1/6=2/6 от басейна

·         Нека за x  часа   двамата  заедно  напълнят   басейна 

·         Тогава е вярно ,че   x.( 1/6+4/6 )=1  - 2/6

·         Следователно   x  = 4/5  часа ,така е 48 минути,  трябва да са пуснати двете тръби, за да напълнят басейна .

 


 


Задача Милена обира  дръвче  с праскови  за 5 дни , а  Кремена  същото  дръвче за 4 дни . След като двете заедно  работили   2 дни , Кремена оставила Милена сама да обере дръвчето .Колко  време   е работила Милена сама ?

                                                             Решение 

Нормата на Милена  е 1/5 , а на  Кремена  ¼  

За един ден двете заедно  ще оберат  1/5+1/4 от дръвчето

За 2 дни , съответно      -   2.(1/5+1/4)=18/20

Тогава работата която, трябва да свърши Милена е 1 - 18/20= 2/20=1/10 

Нека тази работа се свърши от Милена за x  дни .Тогава е вярно ,че x . 1/5 =  1/10  .                                               

Тогава  x =1/2 дни 


 


Задача Едно семейство може да  измаже  жилище  за  5 дни , а, друго за 6 дни .След като първото семейство боядисвало  3 дни , в помощ дошло  другото семейство  .Колко време са работили заедно двете семейства до измазването на жилището ?

Отговор :) 1 и 1/11  дни 


 


 


Задача  Бригада    завършва даден  обект  за  6 месеца .След внедряване на  нови машини  ,обекта  може да бъде  завършен  от същата  бригада  два месеца по-рано .С колко процента се е повишила производителността  на бригадата ?

                                          Решение

  • Производителността на бригадата е  1/6 .
  • Нека  производителността се е увеличила с   x %= x/100
  • Тогава новата  производителност е :   1/6 + x/100 
  • Понеже с новата производителност на бригадата ,работата е свършена  за   4 месеца ,то е вярно уравнението :

                              (1/6 + x/100).4=1 

·         От това ,че  x =25/3,то производителността се е повишила с 25/3  %

 


 

Задача   Четири  трактора , всички с  еднаква  производителност,ако работят заедно изорават нива  за  6  дни. Ако на два от тракторите  увеличим  производителността    с 25 %  и  ако:

А) работят  заедно само  тракторите  с увеличената производителност   ,то те ще изорат същата нива за :

B) ако и четирите трактора  работят  заедно , то те ще изорат нивата за :

                                                                Решение 

 А )За един ден  четирите трактора  изорават  1/6 от нивата  ,а всеки поотделно 1/24 от нивата  

Тогава  новата  производителност   е   1/24  + 25% .1/24 = 1/24 .(1+1/4)=5/96

Тогава двата трактора за един ден  ще изорат 2. 5/96 =5/48

Нека за  x дни , те изорават  дадената нива .Тогава ще е вярно ,че  x. 5/48 =1  и  x =9 и 4/5  часа  , което е 9 часа и 36 минути

B) Отговор  -5 часа и 20 минути 



 

Задача Млад фермер  има два трактора -  първият  изорава блок за 4 дни ,а  вторият  има  производителност  с   25%   по –голяма  от   първият трактор .Първо двата трактори започнали оранта на блока заедно ,но след един ден  фермерът  преместил  тракторът с по-голяма производителност  на друг обект и  другият е изорал  сам  блока . Колко време трябва да оре сам   тракторът с по-ниската производителност за да е изоран блокът ?

 

 

 Задача  Двама стругари изработват   за един ден 360 еднакви  детайла .Единият от тях за 6 дни изработва с 80 детайла  повече ,  отколкото другият за  7 дни .По колко машинни детайла произвежда всеки от стругарите дневно ?

Отговор : ) 200   и  160  


 

Задача Мама  почиства жилището ни за  6 часа, а сестра ми Петя за  същото време  почиства   80 % от него .Един ден  мама започна  да  чисти  ,по-късно  дойде и кака  и  почистиха останалата част от  домът ни за  3 часа . Колко часа е  работила  мама  ?                                                  

Решение                                                                   

  •  Мама за 1 час ще почисти  -1/6 от жилището

Сестра ми  за 6 часа  почиства 80%=4/5 от жилището

Тогава за 1 час  тя почиства  4/30

 Сестра ми  за 1 час  почиства  2/15 от жилището

  •   Двете заедно работят 3 часа   и ще почистят  3.(1/6+2/15)=9/10

От уравнението  9/10 +x/6=1  ,намираме,че x=3/5 часа =36 минути

Тогава мама е работила  3 часа и 36 минути                                                                 

 


Задача   Басейн се пълни за 5 часа  и 30 минути през две тръби  .Двете тръби работили заедно  3  часа ,след което едната  била затворена ,а другата  работила  още  4 часа ,за да се напълни докрай басейна .За колко часа  всяка тръба  ако работи сама, може да напълни басейна .                           

   Решение 

  •  Нека   едната    сама за x часа    пълни  басейна.Тогава тя е с норма 1/x                                                      

      Нека   другата  сама за y часа    пълни басейна.Тогава тя е с норма 1/

  •  От това,че   заедно пълнят басейна за  5  и  1/2  часа  ,то е вярно  ,че 11/2 .(1/x  +1/y)  =1                          Тогава  двете тръби заедно за един час пълнят 1/x  +1/y =2/11
  • За 3 часа  те заедно   пълнят  3(1/x  +1/y) =3.(2/11) = 6/11
  • Нека тръбата която,е останала да   пълни басейна  има производителност   1/x  .Тогава тя ще напълни за 4 часа  4 .  1/x  =4/x   части от басейна
  • Тогава е  вярно уравнението - 6/11 +  4/x= 1                                                                                                         и   x=8 часа и 48 минути    , а  y=14  и  2/3  часа   



Задача Двама работника ,ако работят едновременно ,свършват дадена работа за  6  дни .Ако единият увеличи дневната си норма три пъти,а другият я намали  два пъти, те биха свършили същата работа за 5 дни .За колко време  работникът, който намаля нормата си би свършил работата  сам ?                   

      Решение

Тук  е удобно да  въведем  следните  неизвестни величини: x е частта от работата  ,която първият работник извършва за  1 ден  а,  y е частта от работата  ,която вторият   работник извършва за  1 ден.                                                                         

Тогава  6x  +  6y=1   и    5.3.x  + y/2 .5 =1 От тук намираме,че  y=3/25   и това е  частта от работата за един ден извършена от  вторият работник .Тогава цялата работа  е  извършена от  вторият работник  за  25/3  дни .

 


Задача   Басейн се пълни през две тръби  за 9 и  3/8 часа .   Двете тръби работили заедно 5  часа ,след което втората била затворена ,а първата  работила  още  7 часа ,за да се напълни докрай басейна.За колко часа  всяка тръба , ако работи сама, може да напълни басейна .                             

 Отговор  : ) 15 часа и 24 часа



Ще разгледаме  няколко  задачи   от  работа  чрез   изравняване на   действие Характерното е ,че тук за едно и също време се извършва някакво действие  от  няколко  елемента –хора ,животни .......



При  задачи от работа от този  вид   трябва да спазваме  правилото:    

 Ако е дадено,че  X  обекта за  Y време    свършват  Z работа  , то:                 

              един  обект  за   единица   време  ще свърши  Z:(X.Y)                 



Задача Най-бързата птица соколът- скитник    прелита разтояние от 9 километра  за  10 минути ,когато лети хоризонтално . За колко време три сокола , ако летят хоризонтално  ще прелетят  общо  54 километра                       Решение 

(1)От това,че  1 сокол     прелита  9  километра  за    10 минути

                                       следва , че за същото време 

(2) 3 сокола   ще прелетят     9.3=27   километра  за    10 минути                                                                                   

В задачата се търси   54 километра ,от три сокола за колко време  ще се изминат ?

От това,че 2.27 =54  , то правим извода ,че на трите сокола ще им трябва два пъти повече време, така е 20 минути 


 Обратна задача  3  сокола за  20 минути , прелитат   54  километра    Колко километра прелита един сокол за 10 минути ?                                                                                           Решение 

Той ще прелети три пъти по-малко разтояние , така е 54 :3=18 km за 20 минутиТогава  за 10 минути той  ще прелети два пъти по –малко километра ,така е  18:2 =9 km


Задача   Три котки изяждат  3 мишки  за час и половина. За колко време 10 котки  ще изядат 20 мишки?

                                       Решение

Една котка изяжда   1  мишка  за същото време - час и половина

Една котка изяжда   2  мишки  за  1,5 .2 =3  часа

10 котки   ще изядат 10.2 =20 мишки за същото време, така е за 3 часа .



 Задача Двама рибари за ден и половина хващат 5,5 kg риба.   Колко килограма риба ще хванат 3  рибари за 3 дни?

Решение

Двама рибари за ден и половина хващат 5,5 kg риба.

Тогава двама рибари за 3 дни хващат 11 kg риба.

Тогава един рибар за 3 дни хваща 5,5 kg риба.

Тогава трима рибари за 3 дни ще хванат  (5,5.3) kg=16,5 kg риба.



Задача   Две лястовички  за   9 дни  прелитат  8 километра  За колко дни 3 лястовички  ще прелетят  4 километра ?  

                                     Решение 

1 лястовичка   за 9 дни  ще прелети  4  километра

                                   тогава 

3 лястовички   за 9 дни  ще прелетят   4.3=12  километра

                                   Тогава 

3 лястовички   за  3 дни  ще прелетят   12:3=4   километра




Задача    Пет котки  за   8 дни   изяждат  80  мишки.

Колко мишки  ще изядат 7 котки  за 10 дни?

А) 20                 B)140                         C)70                     D)100

Решение 

                От това,че    пет котки за 8 дни изяждат 80 мишки

        Следва,че   1 котка  за 1 ден   изяжда  80:(5.8)=2 мишки      

        Търсим 7 котки за  10 дни,затова приравняваме към една за 10 дни

        Тогава     7  котки  за 1 ден   ще изядат  7.2=14 мишки  

        Тогава  7  котки    за 10 дни  ще изядат  14.10=140    мишки

 


Задача  6 работника трябва  да   произведат 240  градински стола  ,като всеки един от тях  изработва по 10 стола  на ден  .След като работили два дни  се наложило двама от работниците да отсъстват ,като останалите довършили работата  с един ден закъснение. За колко дни   са  произвели  градинските столове ?

Отговор : ) 5 дни  


 

Задача Пет  лозари обрали   5/7 от едно лозе    за  10  дни .Още колко лозари  трябва да се присъединят към първите ,за да се обере  лозето   за 12  дни .

                                      Решение 

  • 5 лозари за 10 дни  свършват  5/7 от лозето

5+x  зидари  за  12 дни  ще  оберат  лозето

  • Да изравним  зидарите 5+x    по друг начин   

Знаем,че  за 10 дни    5/7 от лозето се обира  от  5 лозари

За един ден  5/7  от лозето ще се обира от 5.10 =50 лозаря

 За един ден  1/7  от лозето ще се обира от 50:5 =10 лозаря

 За 2 дни   1/7  от лозето ще се обира от 10 :2=5 лозаря

 За 2 дни   2/7  от лозето ще се обира от 5.2=10 лозаря                  

 

  • 5+x    = 10   ,откъдето намираме,че x =5 зидари

 


 

Задача Трима  лозари , като работят заедно  обират лозе    за  5  дни .Те  започнали да работят  един  след   друг през равни интервали от време .Когато лозето било обрано се оказало,че  започналият първи  е  работил 4  пъти повече от започналият последен .Ако всички имат еднаква производителност , то за колко дни е било обрано  лозето ?

Решение

Нека последният е работил x дни ,тогава първият  е работил  4 x дни.Понеже са трима   и са работили на равни интервали от време,то всеки един е започвал работа  3x/2 дни след  предходният .

Тогава вторият   е работил   4x 3x/2 =5 x/2 дни

Тогава третият    е работил   5 x/2  3x/2  = x  дни

От това,че тримата имат еднаква производителност и обират лозето   за 5 дни ,то всеки сам ще го обере  за 15 дни .Тогава нормата на всеки един е 1/15.                                                                                      

 x .1/15     +   5 x/2  . 1/15   +  4x  .  1/15  =1 ,откъдето намираме ,че x= 2 дни  .

Тъй като само първият работник е работил от началото до края ,то работата е била свършена за 4.2=8 дни 


 

Задача Четирима работници , като работят заедно свършват дадена работа за 9 дни .Те  започнали да работят  един  след   друг през равни интервали от време .Работата била свършена ,когато започналият първи  работил пет пъти повече от започналият последен .Ако всички имат еднаква производителност , то за колко дни е била свършена работата ?

                                                      (Задачи за извънкласна работа по математика )


 

Задача Две  тръби ако   пълнят   заедно  басейн  за   8 часа  ще напълнят   1/5  от басейна , като всеки от тях има различна производителност (норма ) .Ако първата  пълни басейна  сама  18 часа и спре  , а след нея  пуснат  втората  да пълни басейна   сама 7 и 1/12   часа  ,то  те общо  щяха да напълнят    30  %  от басейна .За колко часа  всяка от тръбите   може сама да напълни басейна  ?

 

 Решение 

·                                  

  • Нека   едната    сама за x часа    пълни  басейна.Тогава тя е с норма 1/x                                                      

      Нека   другата  сама за y часа    пълни басейна.Тогава тя е с норма 1/y 

·     От това,че   заедно пълнят 1/5  от  басейна за  8   часа  ,то е вярно  ,че 8 .(1/x  +1/y)  =1/5                                     Тогава  двете тръби заедно за един час пълнят 1/x  +1/y =1/40

  • ·  Първата тръба  с  производителност   1/x   ще напълни за 18 часа                                                               18.  1/x  =18/x   части от басейна

         Втората  тръба  с  производителност   1/ y  ще напълни за 36/5  часа  36/5y    части от басейна .                                                     Тогава           18/x   +  36/5y   =3/ 10                                                                                                                                                                                                           

                                                       (1) 18/x   +  36/5y   =3 /10 

                                                       (2)  1/x  +1/y =1/40

                                        Полагаме  1/x= a     1/y=b   и чрез изравняване  намираме ,a  и  b .

                                                                 Отговор :x=  90 часа    y = 72 часа 

 

В момента разглеждате олекотената мобилна версия на сайта. Към пълната версия.
Уебсайт в alle.bg